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1 Introduction

Automated planning has been an active area of research in theoretical computer science and Artificial

Intelligence (AI) for over 40 years. Planning is the study of general purpose algorithms that accept as input

an initial state, a set of desired goal states, and a planning domain model that describes how actions can

transform the state. The problem is to find a sequence of actions that transforms the initial state into one

of the goal states. Planning is widely applicable, and has been used in such diverse application domains as

spacecraft control [MNPW98], planetary rover operations [BJMR05], automated nursing aides [MP02], image

processing [GPNV03], computer security [BGHH05] and automated manufacturing [RDF05]. Planning is

also the subject of continued and lively ongoing research.

In this chapter, we will present an overview of how approximations and related techniques are used in

automated planning. We focus on classical planning problems, where states are conjunctions of propositions,

all state information is known to the planner, and all action outcomes are deterministic. Classical planning

is nonetheless a large problem class that generalizes many combinatorial problems including bin-packing
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(Chapters R-26, R-27 and R-28), prize collecting TSP (Chapter R-29) and scheduling (Chapters R-33, R-36

and R-37). There are numerous extensions to classical planning that capture models of uncertainty in the

world and in action outcome; readers interested in learning more about planning are referred to [TGN04].

1.1 Classical Planning

The core of classical planning problems is goal achievement; given a particular state of the world, and actions

that can manipulate the state, the problem is to find a sequence of actions that lead to one of a designated

set of goal states. More formally, a planning domain D consists of a set of world states W and a set of actions

A. An action a defines a deterministic mapping a : W → W . A planning problem instance < D, i,G >

consists of a planning domain D = <A, W >, an initial state i ∈ W and a set of goal states G ⊂ W . The

set of actions define a directed graph on W ; thus, the problem is to find a path from i to a state g ∈ G

or prove that no such path exists. Optimal planning has costs associated with the use of actions, or reward

associated with goals; the objective is to find a path that minimizes an overall cost function.

When described this way, planning appears quite easy; the problem is either to decide whether there is

a path from i to any node g, or to find a minimal cost path. However, W and the associated set of actions

A are usually described implicitly by exponentially compressing the description of W and A. The baseline

problem description in classical planning is called STRIPS. The STRIPS formalism [FN71] uses a set of

propositions P to implicitly define the set of world states; W= 2P , with each state w = {p1, . . . , pn} being

interpreted as the conjunction (p1 ∧ · · · ∧ pn). Each action a is described by a set of preconditions pre(a)

(propositions that must be true to enable a), a set of added effects add(a) (propositions that a makes true)

and a set of delete effects del(a) (propositions that a makes false). An action a is applicable in a state if

the propositions in pre(a) are true in that state. The value of a proposition that does not appear in add(a)

or del(a) is unchanged by the application of a.

Given this description of a planning domain, a STRIPS planning problem is defined by a single initial

state i ⊆ P , and a set of goal propositions g ⊆ P , implicitly defining a set of goal states G = {v ∈ 2P |g ⊆ v}.

A plan can be viewed as an ordered sequence of actions. A plan can also be viewed as an ordered sequence

of concurrent action sets; two actions a, b may be concurrent in a plan if (pre(a) ∪ add(a)) ∩ del(b) = ∅
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Figure 1.1: The STRIPS encoding of a simple planetary Rover domain. The can-drive propositions describe

the simple road network in the picture. The rover is permitted to drive with the camera on, but cannot

drive with the drill on. The drill and camera cannot both be turned on simultaneously. The rover must be

at a location in order to take a picture of sample.
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and (pre(b) ∪ add(b)) ∩ del(a) = ∅. A plan is valid if, for each action set, all actions in the set may be

concurrent, and if every action in the set is applicable in the state resulting from the sequential application

of the previous action sets. The core decision problem is to find a valid plan, i.e., a sequence of applicable

actions sets, (A1, . . . , An), that maps the initial state to a goal state.

Figure 1.1 shows a simple STRIPS version of a planetary rover domain. The domain consists of a mobile

rover with two instruments, a camera and a drill. In this example, the propositions are described using a

combination of predicates and parameters; for example, the predicate at takes a location parameter. Initially,

the rover is at the Lander, it has collected no images or samples, and its drill and camera are off. The rover

can drive from the Lander to a Hill, and then to one of two rocks. The rover can take pictures or sample

with the drill, but not both at the same time. The rover cannot drive with the drill on. Finally, the rover’s

goals are to take a picture at Rock1, and both a picture and a drill sample at Rock2.

Optimal planning couples the constraints on reaching goals with a function mapping valid plans to

values. Common cost functions are the makespan of the plan (i.e. the number of action sets in the plan), the

number of actions in the plan, and the utility of a plan. The utility of the plan is the sum of the rewards for

propositions in the goal state reached, minus the sum of action costs. Consider again Figure 1.1. Suppose

we had two rovers at the lander instead of one; the goal is to gather an image of each rock, and to sample

Rock2 1. A minimum makespan plan would have two rovers go to Rock2, since one can drill and the other

can take the image. Since the camera can stay on while driving, whichever rover took the image at Rock2

could drive to Rock1 and take the image there. By contrast, a minimum action plan would use only one

rover, and would first go to Rock1, leave the camera on while going from Rock1 to Rock2, then do the drilling

operation. The minimum makespan plan has makespan 5 and uses 10 actions. The minimum action plan,

by contrast, has makespan 9 but uses only 9 actions. It is clear how adding action cost and goal reward to

these examples creates complex and interesting problems.

It should be noted that planning research has been moving towards more complex, representations of

classical planning problems that compactly express constraints involving time, resources, and more complex

planning domain rules. We will briefly discuss these extensions at the end of the chapter.
1The STRIPS domain would need to be extended to include action descriptions for the second rover; we omit this for brevity.
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1.2 Methods for Solving Classical Planning Problems

Planning has motivated considerable work on approximate algorithms, local search techniques, exploitation of

structure (e.g. divide-and-conquer methods), and the use of approximations as components of exact planning

algorithms. The motivation behind this is the computational complexity of planning. The complexity is

typically measured in the size of the domain, which is usually dominated by the size of the action descriptions

A. Standard STRIPS problems, where A is finite, are PSPACE-complete. As we will see in this chapter,

restrictions on the problem specification can reduce the computational complexity. For example, the class

of planning problems where the length of the plan is bounded is NP-complete. In this section we give a

broad overview of commonly used search methods to solve planning problems, which will set the stage for a

detailed discussion of approximation and local search techniques.

Search strategies for planning can be characterized by the search space representation and algorithm for

traversing the search space. One of the most commonly used strategies for planning is state-space search, in

which the planner searches for a path between the initial state and a goal state. The state space and the set

of possible transitions is both implicit and exponential in size. To save time and space, states and allowed

state transitions are identified “on the fly” during planning. This leads to two primary state-space search

strategies; progression, which involves searching from the initial state towards a goal state, and regression

search, where the search starts with the propositions in the goal states and search backwards for a path to

a state that contains only propositions that are true in the initial state.

Another strategy, plan-space search, searches the set of possible plans. Typically, a plan-space search

algorithm starts with the empty plan as its current candidate plan. At each point in the search, if the

candidate plan is not yet a valid solution, the algorithm identifies a flaw that prevents the candidate plan

from being a solution, and searches over flaw resolution strategies. For example, a candidate plan may not

be valid because a precondition for an action is not guaranteed to be true; one class of resolution strategies

is the set of actions that adds the required precondition. Plan-space search is not restricted to progression

or regression, but can generate arbitrary plans.

Solving planning problems with a systematic search algorithm requires heuristics to guide the search

process. In the most general sense, heuristics provide guidance on how to make choices in the search process.
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For planning problems, heuristics are primarily used to rank candidate next steps, with the objective of

assigning higher values to steps that point towards the nearest valid plan, or the overall optimal plan.

Admissible heuristics always under-estimate the distance to the goal in state-space. Admissible heuristics

are appealing because, when used with breadth-first search, the first feasible solution found is also an

optimal solution. In state-space search, this yields optimal plans. Unfortunately, there is a tradeoff between

admissibility and accuracy, which is manifested in the speed of search.

In state space search, heuristics are evaluated on states or sets of propositions, and estimate the minimal

distance to the search objective. For progression, this distance is from the current state to a goal state,

while for regression search the distance is from the current set of propositions to a subset of the initial state.

In plan-space search, heuristics are more complex since a plan need not define a single current state that

can be compared to the goal. For example, a plan containing actions with missing preconditions implicitly

identifies a set of paths through the state space, but none of these paths may be valid.

In section 2, we discuss a variety of uses of relaxations in planning algorithms. One common use of

relaxations is to generate efficient, accurate heuristics to guide search; these techniques are discussed in

Section 2.1. The solution of the simpler problem can be used to guide the search; for example, it can be used

as input to a heuristic choice ranking function, or as an indicator of which choices to pursue and which choices

to ignore. We will spend most of our time discussing relaxation based heuristics for state-space search, but

will mention some methods used to guide plan-space search. Another use of relaxations is to approximate

the solutions to planning problems. These methods are described in Section 2.2. Approximations are most

often used for optimal planning problems, but sometimes are used for decision problems as well.

A second class of search guidance techniques relies on identifying and exploiting problem structure. These

techniques are described in Section 2.3. Planning problems often contain sub-problems that can be solved by

specialized combinatorial algorithms, e.g., packing, path planning, and scheduling. Another common form

of structure exploitation is to partition the problem by either ordering or separating goals, thus creating

smaller, more easily solved planning problems.

Local search is a powerful technique that has been used successfully on a variety of combinatorial prob-

lems. We describe local search approaches to planning in Section 3. Planning algorithms employing local
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search can be applied directly to the space of plans; neighborhood selection for these algorithms can be

constructed by using variants of the cost functions discussed in Section 2. Local search can also be done by

transforming the space of plans into another space that is more amenable to existing local search algorithms.

2 Relaxations of Classical Planning Problems

Approximations are the foundation for many of the search guidance techniques used in planning. The basic

idea is to automatically generate an approximation of the given problem, solve or analyze the approximation,

and derive useful heuristic information from the result. Relaxations and related approximation techniques

are particularly appealing, as they can be relatively easy to solve, while still retaining important aspects

of the original problem, and thus being more likely to provide useful information. In this section, we

examine relaxation and approximation techniques used to guide planners. We start with approximation-

based heuristics, and then move on to the use of similar techniques for search space pruning. Finally, we

examine methods that identify sub-problems in planning and use solutions to those to guide the search.

2.1 Heuristic Guidance Using Relaxed Planning Problems

Effective search guidance is essential to the success of systematic search methods for planning. For planning

algorithms this means automatically calculating heuristics from the problem specification. The challenge is

to make such heuristics accurate enough to guide search effectively while preserving speed.

We will begin by considering heuristic estimation in state-space planning. Since planning goals are

stated only in terms of what propositions are true in goal states, the principal source of difficulty in finding

plans is the effect of action delete lists. A relaxed planning problem is one where all the delete lists have

been eliminated. While the existence of a plan can be determined in polynomial time for relaxed planning

problems, finding a plan with a minimal number of actions, i.e., the path to the nearest goal, is still NP-

complete (the minimal action set problem is easily reduced to minimal set covering). Arbitrary solutions to

the relaxed planning problem offer poor heuristic guidance, so more refined approximations are needed. One

approach, used in progression, is to estimate the distance to individual propositions of a goal state separately,

and then combine the estimates. This approach, introduced in the HSP and HSP2 planners [BG01], can be



2 RELAXATIONS OF CLASSICAL PLANNING PROBLEMS 8

described by a cost function c(s, p) that estimates the number of actions needed to make a proposition p

true when starting in state s. The cost estimate, which is easily calculated in low-order polynomial time, is

defined by:

c(s, p) =


0 if p ∈ s

1 + mina∈A,p∈add(a) f({c(s′, p)|s′ ∈ pre(a)})

Letting f = max when combining costs yields a heuristic hmax that is admissible, whereas letting f =
∑

yields a heuristic hadd that may underestimate or overestimate the real cost. A variation on this idea is found

in the FF planner [HN01], but instead of combining estimates for individual propositions, the full relaxed

planning problem is solved in a way that biases it towards short solutions. While this does not optimally

solve the relaxed problem, the results are often sufficiently accurate to provide a useful heuristic estimate.

Consider our sample domain with the initial state at(Rock1) ∧ camera− off and the goal of having

image(Rock2)∧ at(Rock1). The shortest plan has four actions, while both hmax and hadd give an estimate of

3. It is worth noting that while hmax is admissible, hadd is neither an upper or a lower bound. To see that,

consider the same initial state, with the goal of having image(Rock1)∧ image(Rock2). The shortest solution

is a four step plan, while hmax estimates 3 steps and hadd estimates 5 steps.

The same idea can be applied in regression search, but there are some notable differences in how things

work. For one, since the distance estimate is always from the initial state to a set of propositions, the

heuristic can largely be pre-calculated for each individual proposition, leaving only a simple combination

operation; this idea is discussed in [BG01]. However, this simple heuristic will often permit much of the

regression search effort to be spent on finding paths from sets of propositions which cannot be reached from

the initial state, as they contain two or more propositions that are mutually exclusive. This has led to efforts

to identify mutually exclusive sets of propositions and thus prune such states from the search.

The notion of plan-graph [BF95] has turned out to be one effective approach to calculating mutual

exclusions. A plan-graph is an approximation of the state space that can be calculated easily and represented

in a compact fashion. The plan-graph is constructed as follows. The first level consists of the propositions

defining the initial state. The next level consists of all applicable actions (an action a is applicable if all

propositions in pre(a) appear in the previous level, and no two are marked as mutually exclusive). Actions

that cannot be concurrent (as described in Section 1.1) are marked as being mutually exclusive. The following
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Figure 1.2: Part of the PlanGraph for the Rover domain. Boxes represent propositions, ovals represent

actions. Arrows represent action preconditions and effects, while arcs represent mutual exclusions. We show

the PlanGraph assuming the rover is at(Rock1) and the camera is ready. We only show actions drive

and take-pic for simplicity. Notice that the set of mutual exclusions does not change after level 4 of this

PlanGraph.

level consists of all the propositions in the initial level, as well as all effects from actions in the second level.

Propositions pairs that can only be achieved by mutually exclusive actions are marked as such. This process

continues until the set of fluents and mutual exclusion annotations becomes stable. An example of a partial

plan graph for the simple Rover domain is shown in Figure 1.2.

The approximation provided by plan-graph is a powerful tool for guiding search methods. In the Graph-

plan planner [BF95], a simple plan-space regression search is used, with no particular emphasis on action

selection heuristics. Even so, the mutual exclusion annotations significantly reduce the effort spent on incon-

sistent states. The plan-graph has also been used successfully in state space search, as they provide a useful
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approximation of the search space and offer a way to identify impossible states in regression search. Fur-

thermore, plan-graphs have been used to formulate planning problems as constraint satisfaction problems,

[LB03] [DK00], and as satisfiability problems [KMS96] (discussed in Section 3).

In many planning algorithms, and especially in state space search, the plan graph approximation has

been used to generate heuristics. A simple admissible heuristic calculates the distance to a state based on

the level where the propositions in the state first appear without mutual exclusion annotations. For example,

in Figure 1.2, we can see that the first time image(Rock1)) and at(Rock2) appear together without being

mutually exclusive is at level two. The state space heuristics describe above, and the plan-graph-based

heuristics are in fact related special cases of a more general heuristic [HG00]. This generalized heuristic is

based on calculating the number of actions required to achieve a set of propositions of bounded size b. If

b = 1, then the heuristic is the HSP heuristics; if the b = 2, it gives the plan graph heuristic.

The power of the plan-graph has led to many plan-graph-based heuristics. Simple heuristics often

underestimate the number of actions needed to reach a goal, so efforts are typically aimed at improving

that. One approach is to partition a set of propositions into minimally interacting subsets and then add up

the estimates calculated for each subset. The plan-graph can be used to estimate the interactions between

actions and take those into account in heuristic estimates [NKN02].

We note that plan-graph -based heuristics have also been successfully applied to controlling search for

certain types of plan-space planners [NK01]. The idea is to use a special progression planner that focuses

search on a limited set of applicable actions. This limitation simplifies the mapping of partial plans to states,

making distance estimates easier to calculate.

To this point, we have examined abstractions based on relaxing action effects, and using the resulting

problems to derive heuristics. Another approach to relaxing planning problems is to eliminate propositions

from the problem description. This idea is used in planning with pattern databases [Ede02]. An entry in the

database maps a state to a heuristic evaluation that is calculated as the cost of solving a planning problem

that is restricted to a subset of the propositions in the planning problem. Multiple such entries, each using

a planning problem restricted to a different set of propositions, can be combined into an overall admissible

heuristic estimate. The selection of proposition sets is crucial to the value of each entry; typically, the subsets
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are chosen such that each member has minimal interactions with propositions outside the subset.

Optimal planning problems lead to another set of variations on this theme. These problems require action

costs and goal rewards to be folded into the standard plan graph or state space search distance estimates.

In AltAltPS and SapaPS [vdBNDK04], which are progression search and regression planners respectively

designed to solve optimal planning problems, the action cost C(a, t) and proposition costs C(p, t) at each

level t of the plan-graph are calculated by:

C(p, t) = min(C(a, t− 1) + cost(a)

C(a, t) = f({C(s′, t) : s′ ∈ pre(a)})

where f is either min or
∑

, and the cost values are initialized with C(p, 0) = 0 if p ∈ i, C(p, 0) = ∞ if p 6∈

i, and C(a, 0) = ∞.

Finally, Linear Programming approximations that relax variable domains from the propositional set

{0, 1} to the interval [0, 1] can be used on planning problems. These approximations can be used to guide

the search and to prune irrelevant or suboptimal parts of the search space, as is done in many standard

integer programming techniques; examples of this technique include [Byl97] and [VBLN99].

2.2 Solution Approximations Using Relaxation

While heuristics have been found to help a great deal when solving planning problems, there are many cases

when they are not sufficient for solving a problem effectively. This can stem from the heuristics not providing

enough information to steer the search effort, or the fact that a significant portion of the search space must

be searched to solve a given problem, such as is the case when finding optimal plans or proving that no

solution exists. To address these problems, many have turned to methods that reduce the search by pruning

parts of the search space, often using approximate methods.

Approximate pruning techniques have been explored for most existing planning formulations, but they

vary greatly depending on problem being solved and formulation being used. One common notion is to map

the problem to an easier class of problem. In those cases, the approximation primarily involves bounding

some aspect of the planning problem, such as the length or number of actions. Another common approach is

to discard candidates that are viewed as being unlikely to lead to a solution. For example, in the FF planner
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[HN01], one method is to limit action selection to “helpful” actions that achieve a desired goal or sub-goal.

A variation of this approach is to limit the number of options considered at each point.

Optimal planning is a fertile area for approximations for search space pruning, as guaranteed optimality

is a particularly difficult problem, necessitating the use of methods that balance the search effort with the

quality of the solution returned. The simplest approximation is for optimal planning problems where the

solution value is a function of which goal propositions are achieved. Selecting a subset of goal propositions up

front turns the problem into a standard planning problem. For example, in AltAltPS [vdBNDK04], the set

of goals is generated iteratively. For each goal g not yet in a current goal set G′, solve the relaxed planning

problem for goals G′∪ g, biased towards reusing the relaxed plan for achieving G′. Then select the one that

adds the most value. A more sophisticated variation of the selection strategy examines subsets of candidate

goals that are mutually consistent [NK05].

Another approximation technique is to solve an easier planning problem first, then modify the solution

to meet the more difficult objective. This is particularly prevalent in problems where plan length (make-

span) must be minimized. One approach to minimizing makespan is to “parallelize” a plan minimizing the

number of actions [DK03]. Two approximations are at work in this technique; not only is finding a minimal

length plan from a given sequential plan NP-complete [Bäc98], but also an optimal solution to the sequential

planning problem does not necessarily provide the best set of actions for a minimal length parallel plan. This

is demonstrated by the two rover example in Section 1. Other approaches have included adding constraints

to limit the search space [BR05] or heuristics [HN01] to influence a search technique that otherwise ignores

the desired plan optimization criterion.

2.3 Heuristic Guidance Via Sub-Problem Identification

Structure and sub-problem identification is another powerful tool for guiding search. One class of techniques

involves identifying common combinatorial problems as sub-components of planning problems. Such prob-

lems can then be solved with specialized, efficient solvers. The other class of techniques identifies structures

like partitions and ordering restrictions, which are then used to split the planning problem into smaller,

nearly independent planning problems that can be solved quickly with general-purpose planners, after which
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the resulting plans are easily merged.

The best known technique for combinatorial sub-problem identification uses type extraction [LF00] to

identify sets of related propositions and the relations between them. This is done by building up state-

machines whose nodes are propositions, and whose transitions are actions. For example, the characteristics

of a transportation domain are a set of location propositions, at(x), and a mobility action move(x,y) that

enables a change in location. These techniques can identify interesting and non-obvious sub-problems; an

example in [LF00] shows how a wall-painting domain leads to a transportation sub-problem due to constraints

on what colors walls can be painted; i.e. the walls are mobile along a map of colors. Type extraction is also

extensible to “dependent” maps (for example, travelers can only travel places with passports), transported

objects (packages carried in trucks), and multiple move propositions (drive and fly operators). Furthermore,

the approach can be extended to other sub-problem types such as packing or scheduling. A significant

disadvantage of these techniques is that humans must write the sub-problem descriptions. And the issue of

how to handle multiple sub-problems in the same problem instance is an open problem.

The notion of identifying state machines within planning problems is a powerful idea. A more general

approach to identifying problem structures relies on translating planning problems into SAS+ [BN95], using

a transformation algorithm described in [EH99]. In this representation, a planning problem consists of

finite domain variables, and actions cause subsets of these variables to change values; each variable can be

thought of as a state machine. A SAS+ representation of the Rover domain is shown in Figure 1.3. A

SAS+ domain’s causal graph is a directed graph over the variables of the problem; there is an edge from

u to v if a precondition on u causes v to change value, or an effect causes both u and v to change value.

[Hel04] Helmert identifies a subclass of NP-complete SAS+ problem instances whose causal graph has one

variable with no out-edges, called a high-level variable, and for which goals are defined only for a subset

of high-level variables. A polynomial time approximate algorithm for these problems enumerates paths of

value transitions from shortest to longest; each path is checked to ensure it satisfies the goal, and that the

action descriptions for the low-level goals are satisfied. These plans are converted into distance estimates by

summing the number of value transitions for the high-level variable plan and the shortest paths between the

initial and final values for the low-level variable.
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Figure 1.3: The Rover domain in the SAS+ formalism of Bäckstrom. Only one instance of each action is

provided for simplicity. Ovals are values of state variables, boxes represent actions. State variable value

transitions are shown with black arrows, action preconditions and effects are shown with white arrows.

When it comes to planning problems involving transportation and optimization, a common sub-problem

is the Orienteering problem or Prize-collecting TSP (for more information on this problem see Chapter

R-29). The Orienteering problem is quite simple compared to the an optimal planning planning problem,

consisting of a graph with weighted nodes and edges, where the node weights correspond to edge traversal

costs, while node weights correspond to rewards for visiting each edge. Methods for constructing and using

the Orienteering problem for optimal planning are described in [Smi04]. The extraction of the Orienteering

problem consists of three phases. The first phase involves a sensitivity analysis step, in which the ground

propositions are analyzed for the variable cost of goal achievement. This is done by constructing a relaxed

plan for each goal g and calculating costs using the same formula for calculating costs for AltAltPS . For each

proposition p in the final plan for g, assume p was true initially, and that propositions mutually exclusive with

p are infinitely expensive, then recalculate the cost. The “seed” of the Orienteering problem comprises the

set of all propositions for which the cost of goal achievement varies significantly (using a parameter passed
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to the algorithm). The problem is complemented by applying each action to each possible state which is

both reachable from the initial state, and consists only of propositions in the seed set; this is calculable

using a normal plan-graph. The plan-graph is used to estimate the costs of achieving goals at each state

of the resulting problem using the same cost function; this process adds new nodes (states derived from the

plan-graph) and edges. Approximate solutions to the resulting Orienteering problem then provide heuristics

to a classical planner, which can either be an approximate or complete planner.

Another class of structure identification and exploitation techniques relies on identifying sub-problems

that are solved with a planner instead of special-purpose combinatorial solvers. This approach relies on

identifying small sub-problems and guaranteeing that an overall solution can be constructed from the sub-

problems. One method involves finding landmarks [HPS04], which are propositions that must hold in all

valid plans. These propositions can be goals or intermediate states that must be reached to satisfy the goals.

Two landmarks are necessarily ordered if one is a precondition for achieving the other. Again referring to

Figure 1.1, the goals of imaging Rock1 and Rock2 from the initial state of rover at Lander both require

being at the Hill at some point. Deciding if a proposition is a landmark, and deciding whether landmarks

are necessarily ordered, are PSPACE-complete problems. A subset of landmarks are found by building the

relaxed plan-graph ; initially the goals g are landmarks, and subsequently every proposition needed by all

actions is a landmark. The relaxed plan-graph is then used to find a subset of the necessary orders. The

resulting identified landmarks and orders are used to provide search control to planners, either by controlling

decision making or providing guidance to sequential divide-and-conquer algorithms.

3 Planning Using Local Search

Local search is a term used to describe a broad range of strategies for solving combinatorial problems. Local

search is appealing because it tends to solve such problems fast, but theoretical analysis of average case

performance of such algorithms is difficult, and considerable work is often required to tune these algorithms

for best performance. In this section we describe a variety of local search techniques for planning.
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3.1 Local Search Algorithms

Local search algorithms are characterized by a candidate solution to a problem, a set of operators that

modify that solution in order to produce a neighborhood of solutions, and a procedure that chooses one

of the neighbors as the next candidate solution. When local search is used to solve decision problems,

minimizing the number of violated constraints transforms the problem into a pure optimization problem.

The most common strategy to solve such problems is a “greedy” one, in which the lowest cost neighbor is

selected as the next candidate solution. Greedy local search algorithms can be trapped in local minima in

which there are no improving moves; numerous strategies for detecting or avoiding local minima have been

studied, from injecting random moves and random restarts into search (see Chapter R-17) to adding either

temporary constraints (see Chapters R-16,R-23 on tabu search) or permanent ones that influence subsequent

steps. Another problem is that of large neighborhoods, which can be expensive to evaluate. This leads to early

termination rules that improve the rate at which moves are made, at the possible cost of slow improvement

in the optimization criteria (see Chapter R-18 on Very Large Neighborhood search).

Constrained optimization problems can also be transformed into pure optimization problems by assigning

a penalty to violated constraints. In constrained optimization problems over continuous variables, these

penalties are called Lagrange Multipliers (see Chapter R-2). The theory of Lagrange Multipliers states

that saddle points in the space of the original variables plus the Lagrange Multipliers are solutions to the

original constrained optimization problem, as long as some other properties are satisfied; this theory has

been extended to discrete problems as well.

3.2 Local Search Neighborhoods for Planning

A common method of local search for planning is to define a set of operators that directly manipulate plans,

in effect performing local search over plan space. These methods generate a set of possible plans from the

current plan. The plans are then assessed to determine whether they are an improvement over the current

plan; this assessment drives selection of the next plan in the neighborhood.

One option is to operate on the space of partially ordered plans. When feasible plans are easy to find and

optimization is required, local search over the space of plans is a sensible approach. Planning By Rewriting
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or PBR [AK01] is one such technique. The plan rewrite rules are domain-specific operators that are designed

to create better plans. Rules come in four classes: action reordering rules, collapsing rules (that reduce the

number of actions), expanders (inverse of collapsers), and parallelizers (that eliminate ordering constraints).

A sample reordering rule from the Rover (Figure 1.1) is: if the plan moves the rover to accomplish a goal,

then moves back to the current position to accomplish another goal, reorder these goals and discard the

extra movements. If feasible plans are needed, the violated rules can be assigned penalties. This approach

is used by [WC04]; specifically, an elaboration on the landmark technique described in Section 2 is used to

divide the plan into segments. The rules of the domain ensure that the plan is well-formed, that is, each

segment is well-formed, and the actions in segment i establish the preconditions for states in segment i + 1.

Another option is to operate on the space of plan-graphs. An Action Graph C is a subset of a PlanGraph

such that if an action is in C then the propositions in the precondition and add effect lists are also in C.

Action graphs can have inconsistencies, either in the form of mutual exclusions or propositions not supported

by actions. This leads to a natural local search neighborhood; actions can be added to establish support,

or removed to eliminate unsupported actions or resolve mutual exclusions. Linear Action Graphs are action

graphs with at most one action per level. Local search on linear action graphs only manipulates actions to fix

unsupported precondition inconsistencies; this leads to a simpler and smaller search neighborhood. Actions

may be added at any level; the resulting linear action graph is grown by one level. Actions with unsupported

preconditions may also be removed. LPG [GSS03] is a local search planner that operates on Action Graphs

or Linear Action Graphs. In Figure 1.4 we show a linear action graph neighborhood for the Rover example.

We note that there is only way to legally insert the turn-on-drill action. In general, however, there may

be many neighbors to evaluate. Due to the expense of evaluating the neighborhood, and its potential size,

small subsets of inconsistencies may be used to generate neighbors, with heuristics guiding inconsistency

selection. Further limits can also be imposed to reduce the neighborhood size.

The second method involves transforming the plan space into another representation and performing

local search in this representation. One possible representation is SAT; considerable work on local search

(and complete search) has been done on this problem. Propositions encode assertions such as “plan propo-

sition holds at step” or “action occurs at step”, and clauses encode the domain rules governing legal action
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Figure 1.4: An example of the search neighborhood for LPG in the Rover domain using Linear Action

Graphs. The preconditions for drill-sample are unsatisfied, inducing a search neighborhood of size 2.

There is one legal place for adding turn-on-drill; alternately, drill-sample can be removed.

occurrences and their implications. The transformation of the plan space into SAT requires searching over

a restricted set of plans; this is often done in a manner similar to construction of the plan-graph. Different

encodings impact the size of the SAT problem and the local search topology, and therefore solver perfor-

mance. One encoding, due to [KS92], works like this: actions imply their preconditions at the current instant

and their effects at the next instant; one action occurs per instant; the initial state holds; and the frame

conditions hold. An example of this SAT encoding for our Rover domain is shown in Figure 1.5. Another

representation, described in [KS99], allows concurrent actions, and eliminates the action propositions from

the encoding; all that remains are logical clauses expressing the possible transformations of propositions

truth values after a (set of) action invocations. This reduces the size of the domain encoding and thus

improves SAT solver performance. Other techniques to manipulate the SAT encoding include using unit

propagation and posting single-and double-literal assertions to generate new clauses.
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Actions impliy 
preconditions and effects

drive-Hill-Rock1-i =>
at-Hill-i ^ 

can-drive-Hill-Rock1-i ^
at-Rock1-i+1
¬at-Hill-i+1

turn-on-Camera-i =>
off-Camera-i ^

off-Drill-i ^
ready-Camera-i+1 ^
¬off-Camera-i+1

take-pic-Rock1-Camera-i 
=>

at-Rover-Rock1-i ^
ready-Camera-i ^
image-Rock1-i+1

...

Only one action at a time

drive-Hill-Rock1-i v
¬turn-on-Camera-i v

¬Sample-Rock1-Camera-i
... 
^

¬drive-Hill-Rock1-i v
¬urn-on-Camera-i v

¬Sample-Rock1-Camera-i
... 
^

¬drive-Hill-Rock1-i v
turn-on-Camera-i v

¬Sample-Rock1-Camera-i
... 

Frame axioms
(summarized)

take-pic-Rock1-Camera-i ^
true-prop-i ^

=> true-prop-i+1

drive-Hill-Rock1-i ^
true-prop-i

=>
true-prop-i+1

turn-on-Camera-i ^
true-prop-i

=> true-prop-i+1
...

Figure 1.5: The SATPlan encoding of the Rover problem.

SAT is a good representation for finding feasible plans, but more expressive representations can provide

more flexibility to solvers. One such representation is a special subset of ILPs called OIPs (Overconstrained

Integer Programs). The OIP consists of two systems of linear inequalities, one set Aix ≤ b defining feasibile

plans, and another set Cix ≤ d defining optimization criteria. The optimization function is to minimize the

nonlinear function
∑

i Cix − d|Cix > d, that is, the “deviation” of the current solution from the optimal

solution. The encoding is an extension of the SAT-based encodings described previously; it is easy to

transform SAT into a 0− 1 LP. Linear objective functions based on states and actions in the plan are easily

encoded as systems of LPs. This representation is used by WalkSAT(OIP) [KW99].

3.3 Selecting the Successor

Local search algorithms that operate directly on the plan-state face the problem of deciding which neighbor

to select. When the set of plans in the neighborhood is mostly feasible, as is the assumption behind PBR, the

neighborhood can simply be evaluated by the function that determines the value of feasible plans. When the

neighborhood consists of infeasible plans, as occurs with LPG, the problem is how to estimate the relative
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merit of infeasible plans. One solution is to use the heuristics that estimate the amount of work needed to

fix the problems with this plan. The situation is well summarized when considering heuristics estimating the

work needed to find a feasible Linear Action Graph. Let threats(a,C) be the set of supporting preconditions of

actions in C that become unsupported if a is added to C; nopre(a,C) be the set of unsupported preconditions

of a in C; and unsup(b,C) be the set of supporting preconditions of actions in C that become unsupported

if b is removed from C. A simple neighborhood evaluation function is

Ei
0(a,C) = |threats(a,C)|+ |nopre(a,C)|

Er
0(b, C) = |unsup(b, C)|

where Ei
0(a,C) if a is added to C, and Er

0(b, C) is used if b is removed from C. A more complex heuristic

recursively adds actions to support unsupported facts, using Ei
0(a,C) and Er

0(a,C) to penalize these actions.

The most complex heuristic extends the linear action graph using a regression planner that ignores delete

effects of actions; the heuristic then counts actions in the resulting (relaxed) plan and conflicts between the

relaxed plan and the current linear action graph.

Representations based on either SAT or constraints, such as OIP, induce simple neighborhoods. The

common neighborhood in the SAT solvers used in SATPlan [KS96] is to reverse the assignment of each

proposition. For constraint-based representations like OIP, the set of variable assignments satisfying one

violated constraint form the search neighborhood. Representations that partition constraints into feasibility

constraints and optimality constraints such as OIP enable algorithms that choose between sets of violated

constraints according to a pre-determined bias.

Since the theory of Lagrange Multipliers has been extended to discrete search, it is possible to transform

an optimal planning problem into a discrete constrained optimization problem, and implement a search to

find extended saddle points in the Lagrangian space of a problem. This is the approach taken in [WC04]

The Lagrangian penalties are applied both to actions that apply as well as the constraints implied by the

segmentation of the plan. The search for a saddle point utilizes numerous methods to control growth of

the Lagrangian penalties, as well as the usual methods of neighborhood cost control and randomization

to promote exploration. Additional methods are used to adjust segment boundaries during search. This

approach can use many different planners to generate moves during search. This method is more general
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than using OIPs, but still requires careful modeling of the search space.

4 Planning Ahead: The Future of Approximations and Planning

Recent work in AI planning has focused on extending the core goal achievement problem to better represent

the complexity of real-world problems. This includes handling temporal and resource constraints found in

scheduling problems [SFJ00], as well as more complex relations between actions and states. PDDL, the

most popular planning domain description language, has been extended to provide more direct support for

temporally extended state and action, numeric fluents (meant to capture resource states), and planning

with knowledge of future state (exogenous events). In addition, other variants of STRIPS have been de-

veloped to include explicit resource declarations, resource-impacting actions and allow resource state based

preconditions, for example [Koe98].

Work is under way to extend existing techniques to handle the additional complexity, and to develop new

approaches to represent and reason about plans. This work includes approximation methods, structure iden-

tification techniques, and local search, which will continue to play a crucial role in effective automated plan-

ning. For search guidance, plan-graph methods have been extended to include temporal information[SW99]

and numerical fluents[Hof03]. Structure identification and exploitation techniques include the use of special-

purpose methods for scheduling sub-problems [Sri00]. Local search approaches are being utilized for resource-

constrained planning [TCS+04]. However, a great deal of work still needs to be done to reach the full potential

of approximation techniques and local search methods for planning in the future.
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